On the fracture of human dentin: is it stress- or strain-controlled?
نویسندگان
چکیده
Despite substantial clinical interest in the fracture resistance of human dentin, there is little mechanistic information in archival literature that can be usefully used to model such fracture. In fact, although the fracture event in dentin, akin to other mineralized tissues like bone, is widely believed to be locally strain-controlled, there has never been any scientific proof to support this belief. The present study seeks to address this issue through the use of a novel set of in vitro experiments in Hanks' balanced salt solution involving a double-notched bend test geometry, which is designed to discern whether the critical failure events involved in the onset of fracture are locally stress- or strain-controlled. Such experiments are further used to characterize the notion of "plasticity" in dentin and the interaction of cracks with the salient microstructural features. It is observed that fracture in dentin is indeed locally strain-controlled and that the presence of dentinal tubules does not substantially affect this process of crack initiation and growth. The results presented are believed to be critical steps in the development of a micromechanical model for the fracture of human dentin that takes into consideration the influence of both the microstructure and the local failure mode.
منابع مشابه
The Effect of Post Material on Stress Distribution in Mandibular Second Premolar Tooth by Finite Element Analysis
Introduction: The restoration material commonly used as core material for pulpless posterior teeth is mostly amalgam due to its high strength and low cost and it can be used with or without pin. The aim of this study was to evaluate the influence of post material on stress distribution in mandibular second premolar tooth by finite element analysis. Method: The stress distribution was analyzed i...
متن کاملEffect of Stress Triaxiality on Yielding of Anisotropic Materials under Plane Stress Condition
The triaxiality of the stress state is known to greatly influence the amount of plastic strain which a material may undergo before ductile failure occurs. It is defined as the ratio of hydrostatic pressure, or mean stress, to the von Mises equivalent stress. This paper discusses the effects of stress triaxiality on yielding behavior of anisotropic materials. Hill-von Mises’s criteria for anisot...
متن کاملDynamic and Quasi-Static Tensile Properties of Structural S400 Steel
The study of mechanical behavior of the structural steel S400 under quasi- static and dynamic loading has been the subject of this investigation. In oder to obtain different stress - triaxiality conditions the specimens were notched with 1, 1.5, 2 and 3.5 mm notch radius. The results of fractography show as the velocity of tension increases, ductility reduces and a ductile-brittle transition oc...
متن کاملComparison of mechanical property and role between enamel and dentin in the human teeth
The mechanical properties of enamel and dentin were studied using test specimens having the same shape and dimensions because these properties might vary with the experimental conditions and specimen shapes and dimensions. Healthy human teeth were used as specimens for mechanical tests. The stress (MPa), strain (%), and elastic modulus (E, MPa) of the specimens were obtained from compression te...
متن کاملDelamination of Two-Dimensional Functionally Graded Multilayered Non-Linear Elastic Beam - an Analytical Approach
Delamination fracture of a two-dimensional functionally graded multilayered four-point bending beam that exhibits non-linear behaviour of the material is analyzed. The fracture is studied analytically in terms of the strain energy release rate. The beam under consideration has an arbitrary number of layers. Each layer has individual thickness and material properties. A delamination crack is loc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical materials research. Part A
دوره 67 2 شماره
صفحات -
تاریخ انتشار 2003